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Abstract

The mathematical properties of a nonlinear oscillator, having the square of the angular frequency depend quadratically

on the velocity, is presented. The major conclusion is that the exact period TðAÞ is well-defined for all values of

the amplitude (where the initial conditions are taken to be xð0Þ ¼ A and _xð0Þ ¼ 0). An approximate expression is derived

for TðAÞ.

r 2005 Elsevier Ltd. All rights reserved.
A fundamental property of any nonlinear oscillator is the dependence of the period on the initial amplitude,
i.e., T ¼ TðAÞ, where xð0Þ ¼ A and _xð0Þ ¼ 0. The nonlinear oscillator

€xþ ð1þ _x2Þx ¼ 0 (1)

has the interesting feature that its angular frequency, oðAÞ ¼ 2p=TðAÞ, is singular or not defined at finite
values of A when standard perturbation procedures [1–4] are used to calculate oðAÞ. For example, the first-
order harmonic balance method [2] gives [5]

oðAÞ ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� A2
p . (2)

Observe that this expression defines oðAÞ only for 0pjAjo2; outside of this interval, the angular frequency is
complex-valued, indicating that no periodic oscillations occur. One interpretation of this and related results
for other methods is that these techniques for calculating oðAÞ are restricted to small amplitudes [1,5].
However, this observation raises issues as to whether it can be demonstrated that the exact value of the
angular frequency for Eq. (1) exists for all (real) values of the amplitude A. The main purpose of this Short
Communication is to obtain the exact expression for the period TðAÞ and study its properties. The period is
the more fundamental quantity and, as indicated above, is related to the angular frequency by the relation

TðAÞ ¼
2p

oðAÞ
. (3)
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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To proceed, note should be made to a result obtained by Beatty and Mickens [5]: All the nontrivial solutions
of Eq. (1) are periodic for arbitrary initial conditions. They demonstrate this by applying methods from the
qualitative theory of differential equations [2] to the ðx; y ¼ _xÞ phase-space of Eq. (1), i.e.,

dx

dt
¼ y;

dy

dt
¼ �ð1þ y2Þx. (4)

Using Eqs. (4), a first-integral can be calculated for Eq. (1). It is given integrating the expression [2]

dy

dx
¼ �
ð1þ y2Þx

y
, (5)

to obtain

1

2

� �
lnð1þ y2Þ þ

1

2

� �
x2 ¼

A2

2
(6)

for the initial conditions xð0Þ ¼ A and yð0Þ ¼ 0. Solving for y and using y ¼ dx=dt, it follows that the period
TðAÞ is [2]

TðAÞ ¼ 4

Z A

0

dx

½eðA
2�x2Þ � 1�1=2

. (7)

The linear transformation, x ¼ Au, reduces this equation to the form

TðAÞ ¼ 4A

Z 1

0

du

½eA2ð1�u2Þ � 1�1=2
. (8)

The number Tð0Þ represents the period for infinitesimal values of A. For such values of A, it follows that

eA2ð1�u2Þ � 1 ¼ A2ð1� u2Þ þOðA4Þ (9)

and

Tð0Þ ¼ Lim
A!0

4A

Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1� u2Þ

p ¼ 4

Z 1

0

duffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2
p ¼ 2p, (10)

where the value of the last integral is p=2 [6].
A lower bound on TðAÞ can be found by making use of the inequality

1

½eðA
2�x2Þ � 1�1=2

X
1

½eA2
� 1�1=2

. (11)

Using this in Eq. (7) gives

TðAÞX4

Z A

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eA2
� 1

p ¼
4Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eA2
� 1

p . (12)

Thus, TðAÞ is bounded from below.
To see whether TðAÞ is bounded from above, the properties of its derivative, dT=dA, must be determined. A

straightforward, but long, calculation of dT=dA, using Eq. (8), leads to the result

dT

dA
¼ 4

Z 1

0

½ð1� wÞew � 1�

ðew � 1Þ3=2
� du, (13)

where

w ¼ wðA; uÞ ¼ A2ð1� u2Þ. (14)

If the integration variable in Eq. (13) is replaced by w, then

du ¼ �
1

2A

� �
dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 � w
p (15)
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and the w limits of integration are A2 and 0, i.e.,

u ¼ 0¼)w ¼ A2; u ¼ 1¼)w ¼ 0. (16)

Putting all of this into Eq. (13) gives

dT

dA
¼

2

A

� �Z A2

0

½ð1� wÞew � 1�dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � w

p
ðew � 1Þ3=2

. (17)

Now applying the Taylor series expansion [7], it follows that

ð1� wÞew � 1 ¼ ðew � 1Þ � wew ¼
X1
n¼0

wn

n!
� 1

" #
�
X1
n¼0

wnþ1

n!

¼
X1
n¼1

wn

n!
�
X1
n¼1

wn

ðn� 1Þ!
¼ �

X1
n¼2

n� 1

n!

� �
wn. ð18Þ

Since w satisfies the conditions

0pwpA2, (19)

the right-side of the last line in Eq. (18) is non-positive, i.e.,

ð1� wÞew � 1p0. (20)

This result implies that the integrand in Eq. (17) is non-positive and, as a consequence,

dTðAÞ

dA
o0. (21)

This means that TðAÞ is a monotonic decreasing function of A with

Lim
A!1

TðAÞ ¼ 0. (22)

Returning back to Eq. (13), where the integration variable is u, and w ¼ wðA; uÞ is given by Eq. (14), it
follows that

dTð0Þ

dA
¼ 4Lim

A!0

Z 1

0

½ð1� wÞew � 1�

ðew � 1Þ3=2
� du ¼ 4Lim

A!0

Z 1

0

�w2=2
� �

w3=2
� du

¼ � 2Lim
A!0

A

Z 1

0

ð1� u2Þ
1=2 du ¼ 0. ð23Þ

The conclusion is that the slope of TðAÞ is zero at A ¼ 0. Note that combining the results of Eqs. (10), (21),
and (22), the period has the bounds

4Affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eA2
� 1

p pTðAÞp2p. (24)

An analytical approximation for the period can be determined by applying the integral mean-value theorem
[7] to Eq. (8); doing this gives

TaðAÞ ¼
4A

½eA2ð1�ū2Þ � 1�1=2
, (25)

where ū is some value for u in the integral 0pup1. While the mean-value theorem tells us that such a value
must exist, an important issue generally not discussed is that this value depends on the parameters appearing
in the integrand. For this case, ū is a function of the amplitude A and its value can only be expected to become
known when the integral is calculated. But, this integral, see Eq. (8), is not expected to have an exact solution
expressed in terms of a finite number of the elementary functions; consequently, ū ¼ ūðAÞ exists, but is
unknown. What can be done is to attempt to obtain a value for ū such that TaðAÞ gives an accurate
representation for small values of A. This can be done by requiring Tað0Þ to be equal to the exact value
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Table 1

A TaðAÞ
a TeðAÞ

b % Errorc

0.01 6.2831 6.2831 0.00

0.10 6.2768 6.2753 0.03

1.00 5.6584 5.5272 2.4

5.0 0.1261 1.2966 2.8

10.00 6:3301� 10�8 0.6328 100

aTaðAÞ calculated using Eq. (28).
bTeðAÞ calculated using Eq. (8) by numerical integration.
cPercentage error defined as

TeðAÞ � TaðAÞ

TeðAÞ

����
���� � 100.
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Tð0Þ ¼ 2p; see, Eq. (10). Therefore,

Tað0Þ ¼ Lim
A!0

TaðAÞ ¼
4ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ū2
p ¼ 2p. (26)

Since only ð1� ū2Þ appears in Eq. (25), it can be calculated from Eq. (26) to be

1� ū2 ¼
4

p2
. (27)

Therefore, our small amplitude approximation is

TaðAÞ ¼
4A

½e4A2=p2 � 1�1=2
. (28)

Table 1 presents the comparison of this approximation to an accurate numerical integration of the period
relation given by the integral of Eq. (8). As expected, the error is quite acceptable for amplitude values in the
range 0pAt5.

In summary, an exact integral formula has been derived for the period of the nonlinear oscillator given by
Eq. (1). Examination of this integral and related properties of the period, TðAÞ, shows that it is continuous for
all values of AX0; has a negative derivative, i.e., dTðAÞ=dAo0; and decreases monotonic to zero, with
TðAÞ40 for 0pAo1. Since the angular frequency is

oðAÞ ¼
2p

TðAÞ
, (29)

these results collectively demonstrate that oðAÞ has singularity for 0pAo1. Hence, the restrictions on the
range of applicable A values for oðAÞ, obtained by use of various perturbation procedures [1–5], are only
indications of their limitations for calculating the angular frequency for the nonlinear oscillator given by
Eq. (1). A future problem is to obtain for Eq. (8) an asymptotic representation of the period for large A.

The research reported here was supported in part by a grant from DOE and the MBRS-SCORE Program at
Clark Atlanta University. The author thanks Professor Kale Oyedeji (Morehouse College) for compiling the
numerical results and Professor Sandra Rucker (Clark Atlanta University) for discussions on the mean-value
theorem for integrals.
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